Berikutini adalah penjelasan terkait cara menentukan minor dan kofaktor matriks ordo 3x3. Determinan matriks 3 3 metode ekspansi kofaktor penma 2b. Sarrus minor kofaktor adjoin dari keempat langkah hanya adjoin yang belum dibahas. (adjoint) dengan menggunakan bahasa pemrogaman python 3. Mencari invers matriks dengan metode adj. 8 desember 2014
0% found this document useful 0 votes926 views8 pagesCopyright© © All Rights ReservedAvailable FormatsDOCX, PDF, TXT or read online from ScribdShare this documentDid you find this document useful?0% found this document useful 0 votes926 views8 pagesDeterminan Dengan Ekspansi KofaktorJump to Page You are on page 1of 8 You're Reading a Free Preview Pages 5 to 7 are not shown in this preview. Reward Your CuriosityEverything you want to Anywhere. Any Commitment. Cancel anytime.
secaralinear tergantung, maka determinan adalah nol. 3. Ekspansi Laplace Metode atau ekspansi Laplace adalah suatu cara untuk menghitung determinan dengan menggunakan kofaktor. Determinan dari suatu matriks = jumlah perkalian elemen-elemen dari sembarang baris/kolom dengan kofaktor-kofaktornya.
Pada tulisan ini saya akan membagikan sidikit ilmu yang saya dapat tentang bagaimana cara menghitung determinan matriks. Metode yang digunakan adalah menggunakan Ekspansi Kofaktor. Metode ini tidak hanya digunakan untuk menghitung determinan matriks atau tapi digunakan untuk matriks yang berordo lebih besar lagi seperti, dan seterusnya. Untuk menghitung determinan menggunakan metode ini, rumusnya dijamin oleh Teorema berikut. Teorema 1. Determinan matriks yang berukuran dapat dihitung dengan mengalikan entri-entri dalam suatu baris atau kolom dengan kofaktor-kofaktornya dan menambahkan hasil-hasil kali yang dihasilkan yakni untuk setiap dan , maka detA = a 1j C 1j + a 2j C 2j + … + a nj C nj ekspansi kofaktor sepanjang kolom ke-j atau detA = a i1 C i1 + a i2 C i2 + … + a in C in ekspansi kofaktor sepanjang baris ke-i Untuk lebih memperjelas apa itu kofaktor, perhatikan Definisi dibawah ini. Definisi 2. Jika A adalah matriks kuadrat, maka minor entri a ij dinyatakan oleh M ij dan didefinisikan menjadi determinan submatriks yang tetap setelah baris ke-i dan kolom ke-j dicoret dari A. Bilangan -1 i+j Mij dinyatakan oleh C ij dan dinamakan kofaktor entri a ij. Contoh 3. Misalkan kita punya matriks A =. Tentukan minor entri a 11 , a 12 , dan a 13. Tentukan juga kofaktor entri M 11 , M 12 dan M 13 ! Penyelesaian. minor entri a 11 adalah M 11 = = = 58 – 46 = 16 kofaktor a 11 adalah C 11 = -1 1+1 M 11 = -1 2 16 = 16
MenentukanDeterminan Matriks Dengan Perluasan Kofaktor - SEMANGATKU - https: kita juga sanggup memakai metode Ekspansi Kofaktor. Dengan metode ini, kita sanggup memilih tidak hanya determinan matriks ordo 2×2 atau 3×3 tapi dipakai untuk matriks yang berordo lebih besar lagi seperti, 4×4, 5×5 dan seterusnya. kita hapus elemen baris
Apa itu Ekspansi Kofaktor?Metode ekspansi kofaktor adalah suatu metode untuk menghitung determinan dengan menggunakan kofaktor yang mengutamakan kemampuan berhitung secara manual dan secara apa itu kofaktor?Metode SarrusMetode Kupu-KupuSebelum mengenal apa itu kofaktor, mari kita ingat kembali pada saat duduk di bangku SMA kita sudah mengenal dan memahami aturan sarrus untuk matriks 3×3 dan metode kupu-kupu untuk matriks 2×2.Perhatikan contoh berikut Didefinisikan matriks \A\ dan \B\ sebagai berikut $$A=\left[{\begin{array}{cc}a_{11}&a_{12}\\a_{21}&a_{22}\end{array}}\right],~B=\left[{\begin{array}{ccc}b_{11}&b_{12}&b_{13}\\b_{21}&b_{22}&b_{23}\\b_{31}&b_{32}&b_{33}\end{array}}\right]$$Kita akan menentukan determinan matriks \A\ dan \B\. Berdasarkan metode kupu-kupu pada matriks \A\ kita peroleh $$\begin{aligned}\text{det}A&=a_{11}a_{22}-a_{12}a_{21}\\&=a_{11}-1^{1+1}a_{22}+a_{12}-1^{1+2}a_{21}\\&=a_{11}-1^{1+1}\left{a_{22}}\right+a_{12}-1^{1+2}\left{a_{21}}\right\end{aligned}$$dan pada matriks \B\ dengan berdasarkan aturan sarrus dan kupu-kupu kita peroleh $$\begin{aligned}\text{det}B&=b_{11}b_{22}b_{33}+b_{12}b_{23}b_{31}+b_{13}b_{21}b_{32}-b_{13}b_{22}b_{31}-b_{11}b_{23}b_{32}-b_{12}b_{21}b_{33}\\&=b_{11}-1^{1+1}\left{b_{22}b_{33}-b_{23}b_{32}}\right+b_{12}-1^{1+2}\left{b_{21}b_{33}-b_{23}b_{31}}\right+b_{13}-1^{1+3}\left{b_{21}b_{32}-b_{22}b_{31}}\right\\&=b_{11}-1^{1+1}\left{\begin{array}{cc}b_{22}&b_{23}\\b_{32}&b_{33}\end{array}}\right+b_{12}-1^{1+2}\left{\begin{array}{cc}b_{21}&b_{23}\\b_{31}&b_{33}\end{array}}\right+b_{13}-1^{1+3}\left{\begin{array}{cc}b_{21}&b_{22}\\b_{31}&b_{32}\end{array}}\right\end{aligned}$$Dari pernyataan di atas bahwa determinan matriks \B\ dapat dicari dengan menggunakan determinan matriks yang lebih kecil, begitu pula pada matriks \A\.Kemudian pada contoh di atas tanpa kita sadari, juga telah menerapkan konsep kofaktor, untuk lebih jelasnya, berikut definisi kofaktor Definisi Kofaktor Jika \A_{n\times n}=\left[{a_{ij}}\right]\ maka kofaktor dari \a_{ij}\ dapat lambangkan \C_{ij}\ dan \C_{ij}=-1^{i+j}M_{ij}\, dengan \M_{ij}\ menyatakan minor dari \a_{ij}\ dan \M_{ij}\ adalah determinan dari submatriks \A\ yang diperoleh dengan mencoret semua entri pada baris ke-\i\ dan semua entri pada kolom ke-\j\.Baca juga Definisi Fungsi Determinan dengan Perkalian ElementerContoh 1 Tentukan minor dan kofaktor dari entri \a_{12}, a_{31}\ dan \a_{23}\ pada matriks \A\ berikut $$A=\left[{\begin{array}{ccc}2&-1&1\\1&0&-1\\2&-2&0\end{array}}\right]$$Penyelesaian Minor \a_{12}\ diperoleh dengan cara mencoret semua entri pada baris ke-\1\ dan semua entri pada kolom ke-\2\, kemudian dihitung determinannya $$M_{12}=\left{\begin{array}{cc}1&-1\\2&0\end{array}}\right=10-12=2$$dan kofaktor dari \a_{12}\ adalah $$C_{12}=-1^{1+2}M_{12}=-1\times 2=-2$$Dengan cara yang sama kita cari minor dan kofaktor dari \a_{31}\ dan \a_{23}\.$$M_{31}=\left{\begin{array}{cc}-1&1\\0&-1\end{array}}\right=1~\text{sehingga}~C_{31}=-1^{3+1}M_{31}=1$$dan$$M_{23}=\left{\begin{array}{cc}2&-1\\2&-2\end{array}}\right=-2~\text{sehingga}~C_{23}=-1^{2+3}M_{23}=2$$Selanjutnya kita akan menghitung determinan suatu matriks persegi dengan menerapkan konsep ekspansi Determinan dengan Metode Ekspansi KofaktorDeterminan dari matriks \A_{n\times n}=\left[{a_{ij}}\right]~\forall~i,j =\{1,2,3,\dots,n\}\ dapat dihitung dengan mengalikan entri-entri dalam suatu baris atau dalam suatu kolom dengan kofaktor-kofaktornya. Kemudian menjumlahkan semua hasil-hasil kali yang dihasilkan, atau dapat ditulis $$\text{det}A=a_{i1}C_{i1}+a_{i2}C_{i2}+\dots+a_{in}C_{in}$$Karena baris ke-\i\ menjadi acuan, maka disebut juga ekspansi kofaktor sepanjang baris ke-\i\$$\text{det}A=a_{1j}C_{1j}+a_{2j}C_{2j}+\dots+a_{nj}C_{in}$$Karena kolom ke-\j\ menjadi acuan, maka disebut juga ekspansi kofaktor sepanjang kolom ke-\j\Contoh 2 Didefinisikan matriks \A\ sebagai berikut $$A=\left[{\begin{array}{ccc}3&0&-2\\2&5&1\\-1&3&1\end{array}}\right]$$Dengan metode ekspansi kofaktor tentukan determinan matriks \A\.Penyelesaian Tips pilih baris atau kolom yang mengandung banyak unsur/entri nol agar perhitungan menjadi lebih pilih baris pertama \a_{12}=0\ sehingga kita dapat tuliskan $$\begin{aligned}\text{det}A&=a_{11}C_{11}+a_{12}C_{12}+a_{13}C_{13}\\&=a_{11}C_{11}+a_{13}C_{13}\dots*\end{aligned}$$Kemudian kita cari nilai dari masing-masing kofaktor $$M_{11}=\left{\begin{array}{cc}5&1\\3&1\end{array}}\right=2~\Rightarrow~C_{11}=-1^{1+1}2=2$$$$M_{13}=\left{\begin{array}{cc}2&5\\-1&3\end{array}}\right=11~\Rightarrow~C_{13}=-1^{1+3}11=11$$Sehingga jika kita subtitusikan ke persamaan \*\ akan diperoleh $$\begin{aligned}\text{det}A&=a_{11}C_{11}+a_{13}C_{13}\\&=32+-211\\&=-16\end{aligned}$$Baca juga Alasan Metode Sarrus Hanya Berlaku pada Matriks 3×3Kelebihan Metode Ekspansi Kofaktor1. Dapat diterapkan pada matriks persegi 2×2 atau metode sarrus terbatas pada ordo \3 \times 3\ maka untuk menghitung determinan dengan ordo yang lebih tinggi \4\times 4, 5\times5,\dots,n\times n\ dapat menggunakan metode ekspansi dimulai dari matriks 2×2 ?Hal ini karena pada matriks 1×1 dalam mencari determinannya cukup menggunakan definisi saja, dimana jika terdapat matriks \A_{1\times1}=\left[a_{11}\right]\ maka determinannya adalah \\text{det}A=a_{11}\.2. Efektif untuk yang suka perhitungan manual dan secara ini didapat dari perbandingan dengan metode lainnya seperti aturan sarrus dan reduksi baris, dimana masing-masing mempunyai kelebihan tersendiri. Ekspansi kofaktor juga sekaligus dapat melatih ketahanan dalam berhitung, kita ambil contoh pada saat mencari determinan \A_{5\times 5}\ maka kita akan menemukan determinan dari submatriks dari \A\ yang berukuran \4 \times 4\, dimana determinan dari submatriks tersebut kita hitung juga dengan ekspansi kofaktor sehingga akan ditemukan determinan submatriks dari submatriks \A\ yang berukuran \3 \times 3\ dan paham konsep dari ekspansi kofaktor dan mempunyai hitungan yang tepat maka metode ekspansi kofaktor akan efektif Konsep kofaktor berguna untuk mencari invers saat duduk dibangku SMA pasti sudah mengenal rumus mencari invers berikut $$A_{n\times n}^{-1}=\frac{\text{Adjoin}A}{\text{det}A}$$Pada persamaan tersebut terdapat Adjoin\A\ yang didefinisikan sebagai transpose matriks kofaktor dari \A\ dapat kita tuliskan $$\text{Matriks kofaktor A}=\left[{\begin{array}{cccc}C_{11}&C_{12}&\dots&C_{1n}\\C_{21}&C_{22}&\dots&C_{2n}\\\vdots&\vdots&\ddots&\vdots\\C_{n1}&C_{n2}&\dots&C_{nn}\end{array}}\right]$$Maka $$\text{Adjoin}A=\left[{\begin{array}{cccc}C_{11}&C_{21}&\dots&C_{n1}\\C_{12}&C_{22}&\dots&C_{n2}\\\vdots&\vdots&\ddots&\vdots\\C_{1n}&C_{2n}&\dots&C_{nn}\end{array}}\right]$$Dari kenyataan tersebut, jelas bahwa konsep kofaktor dapat dimanfaatkan untuk mencari invers matriks. Sehingga tidak ada salahnya mempelajari ekspansi kofaktor, namun disamping itu metode ekspansi kofaktor menurut penulis masih terdapat Metode Ekspansi KofaktorMenurut penulis metode ekspansi kofaktor dalam segi kecepatan masih kurang jika dibandingkan dengan metode campuran yaitu gabungan dari macam-macam metodesarrus, kupu-kupu, ekspansi kofaktor, reduksi baris dan lainnya yang dipadukan dengan sifat-sifat postingan ini kita tidak akan membahas mengenai metode reduksi baris. Sehingga sekarang untuk membuktikan argumen tersebut, saya asumsikan kita sudah memahami metode reduksi 3 Misalkan kita akan menghitung determinan matriks \A\ sebagai berikut $$\text{det}A=\left{\begin{array}{cccc}1&4&5&-2\\2&7&2&1\\1&6&4&-1\\-3&3&1&2\end{array}}\right$$Kita akan mereduksi matriks tersebut dengan mengenakan operasi baris elementer \-2R_{1}+R_{2}\rightarrow R_{2}\\-R_{1}+R_{3}\rightarrow R_{3}\\3R_{1}+R_{4}\rightarrow R_{4}\secara berturut-turut sehingga kita peroleh $$\text{det}A=\left{\begin{array}{cccc}1&4&5&-2\\0&-1&-8&5\\0&2&-1&1\\0&15&16&-4\end{array}}\right$$Nah, selanjutnya kita kenakan metode ekspansi kofaktor, kita pilih entri-entri pada kolom pertama dimana \a_{11}=1\ dan \a_{21}=a_{31}=a_{41}=0\.$$\begin{aligned}\text{det}A&=a_{11}C_{11}+a_{21}C_{21}+a_{31}C_{31}+a_{41}C_{41}\\&=C_{11}\end{aligned}$$Dengan aturan sarrus kita peroleh $$\begin{aligned}M_{11}&=\left{\begin{array}{cccc}-1&-8&5\\2&-1&1\\15&16&-4\end{array}}\right\\&=-1-1-4+-8115+5216-5-115-1116-82-4\\&=63\end{aligned}$$Sehingga kita peroleh $$\text{det}A=C_{11}=-1^{1+1}M_{11}=163=63$$Jadi dengan menggunakan metode campuran akan lebih efektif, namun kita dituntut untuk sekreatif mungkin untuk menyusun alur perhitungan yang termudah.
Contohsoal pilgan invers matriks ordo 3x3 beserta jawabannya. Cara menghitung determinan matriks 3x3 dengan ekspansi kofaktor. Seperti yang kita ketahui, terdapat dua rumus dalam mencari nilai determinannya, . Invers matriks 3x3 rumus cepat . Anda dapat melihat rumus dalam mencari determinan matriks berordo 3.
21 Determinan dengan Ekspansi Kofaktor 2.1.1 Determinan dengan Minor dan kofaktor 2.1.7 Tes Determinan untuk Invertibilitas 2.2 Mencari determinan dengan cara Sarrus 2.3 Metode Sarrus hanya untuk matrix berdimensi 3x3 2.4 Menghitung Inverse dari Matrix 3 x 3 2.5 Sistem Linear Dalam Bentuk Ax = λx 3 Vektor dalam Ruang Euklide
Minorf Minor g Minor h Minor i Minor A Kofaktor Kofaktor A Adjoin Adj A Invers Matriks Dari keseluruhan langkah Sarrus Minor Kofaktor dan Adjoin Jika digabungkan akan diperoleh rumus dan cara cepat invers matriks 3×3 metode Minor r T 7 MODUL 2 DETERMINAN DAN INVERS MATRIKS January 4th, 2021 - DETERMINAN DAN INVERS MATRIKS 2 1 Determinan
Tanya 11 SMA. Matematika. ALJABAR. Diketahui matriks A= (a11 a12 a13 a21 a22 a23 a31 a32 a33). Tentukan determinan matriks A dengan aturan ekspansi kofaktor-minor baris pertama. Determinan Matriks ordo 3x3. Matriks. ALJABAR.
Determinan dengan Ekspansi Kofaktor Beberapa Aplikasi Matriks • Solusi SPL • Optimasi • Model Ekonomi • dan lain-lain. 2 1/29/2017 Determinan Matriks MUH1G3/ MATRIKS DAN RUANG VEKTOR. 3 1/29/2017 Secara umum, cara menghitung determinan dengan ekspansi kofaktor:
Dalammatriks 3×3 ada berbagai cara untuk menentukan determinan sebuah matriks, yaitu dengan menggunakan metode sarrus dan metode ekspansi kofaktor (Minor-Kofaktor). Berikut cara menentukan determinan dengan metode sarrus: Jika diketahui sebuah matriks maka determinan B adalah =
. mxxi3j529x.pages.dev/148mxxi3j529x.pages.dev/741mxxi3j529x.pages.dev/428mxxi3j529x.pages.dev/617mxxi3j529x.pages.dev/172mxxi3j529x.pages.dev/638mxxi3j529x.pages.dev/387mxxi3j529x.pages.dev/16mxxi3j529x.pages.dev/2mxxi3j529x.pages.dev/618mxxi3j529x.pages.dev/469mxxi3j529x.pages.dev/238mxxi3j529x.pages.dev/339mxxi3j529x.pages.dev/366mxxi3j529x.pages.dev/382
menghitung determinan dengan ekspansi kofaktor